WELLCOME TO MY BLOG AND HAPPY READING

Minggu, 23 November 2014

Statistik Inferensial

pengertian Statistik Inferensial

Statistik inferensial adalah teknik analisis data yang digunakan untuk menentukan sejauh mana kesamaan antara hasil yang diperoleh dari suatu sampel dengan hasil yang akan didapat pada populasi secara keseluruhan. Jadi statistik inferensial membantu peneliti untuk mencari tahu apakah hasil yang diperoleh dari suatu sampel dapat digeneralisasi pada populasi. Sejalan dengan pengertian statistik inferensial menurut Creswell, Muhammad Nisfiannoor berpendapat bahwa statistik inferensial adalah metode yang berhubungan dengan analisis data pada sampel untuk digunakan untuk penggeneralisasian pada populasi. Penggunaan statistic inferensial didasarkan pada peluang (probability) dan sampel yang dipilih secara acak (random).

Konsep statistik inferensial yaitu;
1.    Standard Error
Peluang setiap sampel sangat identik dengan populasinya sangat kecil (nill) meskipun inferensi populasi didapat dari informasi sampel.Penerapan random sampling tidak menjamin karakteristik sampel sama persis dengan populasi. Variasi prediksi antara mean disebut sampling errorSampling error ini tidak bisa dihindari dan ini bukan kesalahan peneliti. Yang menjadi persoalah adalah apakah error tersebut semata-mata hasil sampling error atau merupakan perbedaan yang bermakna yang akan pula ditemukan pada papulasi yang lebih besar.
Ciri standard error adalah bahwa error yang terjadi bisaanya berdistribusi normal yang besarnya berbeda-bedadan error tersebut cenderung membentuk kurva normal yang menyerupai lonceng.
Faktor utama yang mempengaruhi standard error adalah jumlah sampel. Semakin banyak sampelnya, semakin kecil standard  errornya. Ini menunjukkan bahwasampel penelitian semakin akurat bila banyak sampelnya.
Faktor utama yang mempengaruhi standard error adalah jumlah sampel. Semakin banyak sampelnya, semakin kecil standard error meannya yang berarti bahwa semakin kecil standard error-nya, semakin akurat mean sampel untuk dijadikan estimator untuk mean populasinya.
2.    Pengujian Hipotesis
Pengujian hipotesis adalah proses pengambilan keputusan dimana peneliti mengevaluasi hasil penelitian terhadap apa yang ingin dicapai sebelumnya. Misalnya, kita ingin menerapkan program baru dalam pelajaran membaca. Pada rencana penelitian dikemukanan hipotesis penelitian yang memprediksi perbedaan skor siswa yang menjalni program baru tadi dengan proglam lama, dan hipotesis nol (0), yang memprediksikan skor kedua kelompok tidak akan berbeda. Setelah data dihitung mean dan standar deviasinya dan hasilnya menunjukkan skor siswa dengan program baru lebih tinggi (berbeda secara signifikan) daripada siswa yang mengikuti program lama, maka hipotesis penelitian diterima dan hipotesis nol ditolak. Yang berarti bahwa program baru tersebut efektif untuk diterapkan pada program membaca. Intinya, pengujian hipotesis adalah proses evaluasi hipotesis nol, apakah diterima tau ditolak.
3.    Uji Signifikansi
Uji signifikasi  adalah cara mengetahui adanya perbedaan antara dua skor. Signifikansi merujuk pada tingkat statistik dari probabilitas dimana dengannya kita bisa menolak hipotesis nol. Uji signifikansi dilakukan dengan menentukan tingkat probabilitas praseleksi yang dikenal dengan tingkat signifikansi (α). Tingkat probailitas ini dijadikan dasar untuk menolak atau tidak menolak hipotesis nol. Standar yang digunakan umumnya 0,05 kesempatan (5 dari 100). Adapula yang menggunakan 0.01. Semakin kecil nilai probabilitasnya, semakin kecil pula kemungkinan temuan tersebut diperoleh karena disebabkan oleh peluang.
Jenis-jenis Statistik Inferensial
Terdapat dua jenis statistik inferensial:
1.    Statistik Parametrik; yaitu teknik yang didasarkan pada asumsi bahwa data yang diambil mempunyai distribusi normal dan menggunakan data interval dan rasio.
a.    Uji-t
Uji-digunakan untuk menentukan apakah 2 kelompok skor memiliki perbedaan yang signifikan di tingkat probabilitas pilihan. Contohnya, Uji-tdapat digunakan untuk membandingkan skor membaca pada laki-laki dan skor membaca pada perempuan di sekolah A.
Strategi dasar Uji-adalah membandingkan perbedaan nyata antara mean kelompok (X1-X2) menentukan apakah ada perbedaan yang diharapkan berdasarkan peluang.
Uji-terdiridari:
Uji-t untuk sampel independen digunakan untuk menentukan apakah ada perbedaan yang signifikan antara dua sampel independen. Sampel independen ditentukan tanpa adanya pemadanan jenis apapun. Software SPSS dapat digunakan untuk uji-t.
Uji-t untuk sampel non-independen digunakan untuk membandingkan dua kelompok terpilih berdasarkan beberapa kesamaan. Uji ini juga digunakan untuk membandingkan performansi kelompok tunggal dengan pretest danposttest atau dengan dua perlakuan berbeda.
b.    Analisis Varians (ANOVA)
Dalam Educational Research (2008), Cresswell mengartikan ANOVA sebagai teknik statistik yang digunakan untuk perbedaan yang ada pada lebih dari dua kelompok data. Adapun jenis analisis varians, yakni:
1.  ANOVA sederhana (satu arah) digunakan untuk menentukan apakah skor dari dua kelompok atau lebih memiliki perbedaan secara signifikan pada tingkat probabilitasnya. Misalnya,  pengukuran prestasi siswa berdasarkan tingkat ekonominya (tinggi, sedang, dan rendah), dimana tingkat ekonomi sebagai variabel kelompok dan tingkat ekonomi sebagai variabel dependennya.
2.    Multi comparison adalah pengujian yang melibatkan perhitungan bentuk istimewa dari uji-t. Setiap kali uji signifikansi dilakukan, tingkat probabilitasnya kita terima. Misalnya, kita setuju kalau hasil yang akan didapatakan muncul hanya 5 kali kesempatan pada setiap 100 sampel. Hasil tersebut dikatakan bermakna dan bukan sekedar karena peluang semata.
3.    ANOVA Multifaktor
Seperti pembahasan kelompok sebelumnya, desain factorial digunakan untuk meneliti dua variabel bebas atau lebih serta hubungan di antara variabel tersebut, maka ANOVA multifaktor adalah jenis analisis statistik yang paling sesuai. Hasilan alisisnya adalah rasioterpisah untuk setiap variabel bebas dan satu rasio untuk interaksi. Misalnya, kita ingin mengetahui apakah gender dan tingkat ekonomi (tinggi, sedang, dan rendah) mempengaruhi prestasi mahasiswa. ANOVA multifaktor memungkinkan kita untuk menghitung kedua variabel bebas (gender dan tingkat ekonomi) dan variabel terikat (prestasi; IPK, skor bahasa, skor matematika, dsb)
4.    Analysis of Covariance (ANOVA)
Analisis ini model ANOVA yang digunakan dengan cara berbeda dimana variabel bebas dihitung dengan memperhatikan rancangan penelitian. Bila penelitian memiliki 2 variabel bebas atau lebih, maka uji jenis inilah yang cocok digunakan melalui dua cara yakni: (1) sebagai teknik pengendalian variabel luar (extraneous variable) serta sebagai alat untuk meningkatkan kekuatan uji statistik. ANCOVA bisa digunakan pada penelitian kausal komparatif maupun penelitian ekperimental yang melibatkan kelompok yang sudah ada dan kelompok yang dibentuk secara acak, dan (2) ANCOVA digunakan untuk memperkuat uji statistic dengan memperkecil varians dalam kelompok (error). Kekuatan yang dimaksudkan adalah kemampuan uji signifikansi untuk mengenali temuan riset sebenarnya, yang memungkinkan penguji menolak hipotesis 0 (nol) yang salah.
c.    Regresi Jamak
Regresi jamak digunakan pada data berbentuk rasio dan interval. Regresi jamak menggabungkan variabel yang diketahui secara terpisah untuk memprediksi (misalnya, hubungan antara) criteria dalam persamaan (rumus) prediksi atau dikenal dengan  Multiple Regression Equation. Regresi jamak merupakan prosedur analisis untuk penelitian eksperimental, kausal komparatif, dan korelasional karena teknik ini tidak hanya untuk menentukan apakah ada hubungan antar variable tetapi juga untuk mengetahui besar (kuatnya) hubungan tersebut. Salah satu jenis regresi jamak adalah step-wise analysis yang memungkinakn kita memasukkan atau mengeluarkan variabel utama (predicator) ke dalam persamaan regresi tahap demi tahap. Regresi jamak juda menjadi dasar analisis jalur yang bertujuan untuk mengidentifikasi tingkat interaksi variabel utama satu sama lain dan berkontribusi pada variabel terikat.
Sementara dalam Emzir (2011) dikatakan bahwa regresi jamak merupakan perluasan dari regresi dan prediksi sederhana dengan penambahan beberapa variabel. Kekuatan prediksi akan semakin terdukung dengan penambahan variabel.
d.    Korelasi
Menurut Cohen, dkk., Teknik korelasi digunakan untuk mengetahui tiga hal pada dua variabel atau dua set data. Pertama, “Apakah ada hubungan antara dua variabel atau set data”. Bila jawabannya “ya”, maka dua hal berikutnya perlu kita cari yakni; “Bagaimana arah hubugan tersebut”; dan “Apa yang menjadi ukurannya?” Hubungan yang dimaksudkan adalah kencenderungan dua variabel atau set data berbeda secara konsisten. Dalam Solusi Mudah dan Cepat Menguasai SPSS 17.0 unruk Pengolahan Data Statistik (Wahana Komputer, 2009) dikatakan analisis korelasi dilakukan untuk menunjukkan keeratan hubungan kausal antara variabel-variabel. Jenis-jenis analisis korelasi, yaitu: Korelasi sederhana, yaitu , korelasi parsial, dan uji distance.
2.    Statistik Non-parametrik
Statistik nonparametrik adalah jenis statistic inferensial yang tidak mengharuskan data berdistribusi normal dan jenis data yang digunakan adalah data nominal dan ordinal.
a.    Chi Square (Chi kuadrat)
Chi Square adalah suatu ukuran menyangkut perbedaan yang terdapat di antara frekwensi pengamatan dengan frekwensi teoritis/frekwensi harapan yang dinyatakan dengan simbol 2. Statistik nomparametrik yang digunakan untuk menanalisis data yang berupa frekwensi atau persentase serta yang berbentu prporsi yang bisa dikonversi menjadi persentase. Chi squaredigunakan untuk membandingkan frekwensi yang muncul pada kategori  atau kelompok berbeda. Dikenal dua kategori, yaitu; true category adalah apabila orang atau objek bersifat bebas pada setiap penelitian (laki-laki dan perempuan), dan artificial category yakni kategori yang secara operasional diartikan sebagai peneliti itu sendiri. Contohnya, mencari hubungan antara gender dengan keterampilan membaca pada sekolah A. Karena adanya variabel nominal (gender dan keterampilan membaca), maka data tersebut dianalisis dengan statistik nonparametrik dengan menggunakan teknik chi square.

Tidak ada komentar:

Posting Komentar